

Runway Exit Design Tool and Landing Events Database Seminar

N. Hinze, O. Afshin, N. Mirmohammadsadeghi, H. Swingle, L. Leng, and A. Trani June 8, 2021

Runway Exit Design Tool and Landing Events Database Seminar

- Tentative Agenda
- 1:00 to 1:10 PM Introduction (Kent Duffy and Lauren)
- 1:10 to 2:10 PM Explanations of Landing Events Database and Runway Exit design Model
 - New features of the Runway Exit Model and LED
- 2:10 to 2:30 PM Questions and answers
- 2:30 to 3:00 User feedback section

Acknowledgments

- Project supported by the Federal Aviation Administration (FAA)
- FAA Project Technical Monitors: Kent Duffy and Lauren Vitagliano
- Project of the National Center of Excellence for Aviation Operations Research (NEXTOR 2)
- Special thanks to:
- Tom Tessitore (FAA)
- Chicago Department of Aviation (Ginger Evans)
- Charlotte-Douglas International Airport (Jack Christine)
- Metropolitan Washington Airports Authority (Jennifer Dermody)

Project Phases and Model Development

Phase	Objectives
1	 Process Airport Surface Equipment data (37 airports and data for years 2015 and 2016) Develop a Windows-based version of the Runway Exit Optimization Model developed in 1994 Created Landing Event Database accessible through a computer client program
2	 Process Airport Surface Equipment data (43 airports and years 2017-2020) Improve the Runway Exit Optimization Model developed in Phase 1 (pilot motivational practice, updates to aircraft database) Load the new airport data into the Landing Event Database (ASSC data for years 2017-2020)

Phase 1 Project Outcomes

- Landing Events Database archives 11.8 million landing records from ASDE-X data (all landing operations at 37 U.S. airports during 2015 and 2016)
 - Stand-alone product (client software)

Virginia'l'ech

- Tabular and graphical data on runway exit utilization at 37 U.S. airports
- Updated Runway Exit Design Tool (REDIM 3 model)
 - Windows-based computer model to estimate the best location of runway exits (stand-alone software)
 - Uses individual aircraft Kernel distributions collected in the Landing Events Database to model landing performance
- Developed guidance for updated to Table 4-13 in AC 150/5300-13A, Airport Design

Version 3.09 - released on January 27, 2021

VirginiaTech

- Fixed custom exit geometries parameters not saved properly in "Runway Evaluation" mode.
- Version 3.0.8 released on January 7, 2021
 - Added runway occupancy time based on aircraft clearing the holdbar
 - Added ability to save and load aircraft mix
 - Added ability to export all the raw data
 - Improvements to memory management

Uirginia Tech

Site to Obtain the Landing Events Database and Runway Exit Design Model

VIRGINIA TECH.	۲	APPLY	VISIT	GIVE	Shop 🗸	Resources for 🗸
AIR TRANSPORTATION SYSTEMS LABORATORY					MENU	SEARCH Q
Air Transportation Systems Laboratory / Products / Runway Exit Design Interactive Model V3 (REDIM-V3)						
Explore					•	
Runway Exit Design Interactive Mo	del V3 (REDI	M-V	'3)		
				7		
	Razawa					

https://atsl.cee.vt.edu/products/runway-exitdesign-interactive-model--redim-.html

Download REDIM 3

- REDIM 3.0.9 Windows Installer
- User Group
- User Manual
- FAQs
- Change Log

Download Landing Events Database

- Landing Events Database 1.2.4 Windows Installer
- User Manual

Download REDIM 2

REDIM 2.1

Detailed Documentation for REDIM 3

- Aircraft Database
- Runway Clusters
- Exit Clusters (Plots)
- Distributions:
 - Threshold Crossing Speeds: Aircraft AAC
 - Nose Gear Down Distances: Aircraft AAC
 - Nominal Decelerations: Aircraft AAC
 - Point Of Curvature (PC) Speeds: Aircraft AAC

Landing Events Database

Landing Events Database Updates/Improvements

- Version 1.2.3 released on February 10, 2021
- Version 1.2.4 released on April 15, 2021

VirginiaTech

- Allow queries by date ranges in the RawData viewer
- This should facilitate the runway auditing process investigations
- Additional features added to the "Statistics" section
- Reports can now be done by runway and exit
- Provides quick synopsis of operations by runway and runway exit

UirginiaTech

Landing Event Database Tool Version 1.2.4

Landing database client can be downloaded at:

https://atsl.cee.vt.edu/products/runway-exitdesign-interactive-model--redim-.html

UirginiaTech

Landing Event Database Tool Version 1.2.4

Landing Events Database : Data Collection

ASDE-X data

- 11.8 million landings (12 TB data)
- Years 2015 and 2016
- Runway exit geometry information for 3,385 runway exits at 292 runways (top 37 airports)
- One and 5-minute weather data for all 37 airports
- Video data to validate the aircraft touchdown location algorithms

Runway exit polygons at EWR airport

Phase 2 Runway Auditing Effort

- Completed updates to all runways and runway exits at 37 airports in the landing events database (see table below)
- Adding six new airports to the database: 39 runway ends and 349 runway exits

	No. Audited	No. Geometry Changes Required	No. Geometry Changes Updated				
Runways	320	24	24				
Exits	3567	244	244				
	Snapshot						
	No.	No. Geometry Changes Co	ompleted				
Runways	39	39					
Exits	349	123					

Airport ID	No. Runway Geoms.	No. Exit Geoms.	Runway Geom. Status	Exit Geom. Status
ANC	6	55	1	4
MCI	6	55	✓	✓
MSY	4	24	×	🖌 (13 of 24 Complete)
PDX	6	52	1	×
PIT	8	80	✓	×
CVG	8	83	\checkmark	×

Virginia'l'ech

VirginiaTech Invent the Future Validation of Landing Parameters using Video Data Collected at 3 Airports

Landing Event Database Tool (1)

Analysis	Purpose	Metrics and Ready-Made Query Options				
Aircraft Mix	Provides an overview of aircraft fleet mix in	By runway				
	the form of a pie chart with the top 10 aircraft in the fleet mix presented.	By runway exit				
Runway Occupancy	Provides three values of runway occupancy	1.Average ROT (in seconds) by runway, runway exit and aircraft				
Time	time measured at three locations:	2.Median ROT (in seconds) by runway, runway exit and aircraft				
	1.Runway edge	3. Probability Density Function (PDF) of ROT (dim) by runway, runway				
	2.Fuselage out	exit and aircraft				
	3.At hold bar	4.Cumulative density function of ROT by runway, runway exit and aircraft				
		5.Runway exit utilization (percentage) by runway exit and aircraft				
Speed	Provides information about five aircraft	1.Average ROT (in seconds) by runway, runway exit and aircraft				
	ground speeds at different locations of the landing profile:	2.Median ROT (in seconds) by runway, runway exit and aircraft				
	1.Threshold	3.Probability Density Function (PDF) of ROT (dim) by runway, runway exit and aircraft				
	2.Nose gear down	4.Cumulative density function of ROT by runway, runway exit and				
	3.Point of curvature	aircraft				
	4.Runway edge	5.Detailed speed profiles as a function of distance by aircraft, runway and runway exit				
	5.Hold bar					
		6.Detailed speed profiles as a function of time by aircraft, runway and runway exit				
Nose Gear Location	Provides estimates of nose gear distance. The nose gear distance is estimated in the landing	1.Nose gear distance from runway landing threshold by runway, aircraft and runway exit				
	algorithm to initiate the nominal deceleration.	2.Probability Density Function (PDF) of nose gear distance (feet or meters) by runway, runway exit and aircraft				
		3.Cumulative density function of nose gear distance (feet or meters) by runway, runway exit and aircraft				

Landing Event Database Tool (2)

Analysis	Purpose	Metrics and Ready-Made Query Options				
Deceleration	Provides two values of aircraft deceleration on	Average deceleration (in m/s2) by runway, runway exit and aircraft				
	the runway:	Median deceleration (in m/s2) by runway, runway exit and aircraft				
	Nominal	Probability Density Function (PDF) of deceleration (in m/s2) by				
	Nominal location to point of curvature (Nominal to PC)	runway, runway exit and aircraft (both average and median values can be plotted)				
		Cumulative density function of aircraft deceleration (in m/s2) by runway, runway exit and aircraft (both average and median values can be plotted)				
Raw Data	Provides detailed information (in a table) on 30 key parameters for every landing contained in the Landing Events Database	30 key parameters defining the landing profile of each landing operation. Parameters include: flight ID, aircraft type, runway,				
	Provides graphical information of every landing in the database.	and time, nominal deceleration, deceleration from nominal point to PC, exit speed, and airport wind conditions.				
	Provides a graphical depiction of individual	Speed-distance profile of each landing event				
	landings in a Microsoft NAVTEQ map layer	Speed-time profile of each landing event				
	(bottom viewport)	Acceleration-time profile of each landing event				
		Acceleration-distance profile of each landing event				
		Processed numerical data with speed, acceleration, distance and time for individual landings.				
Statistics	Summarizes the landing statistics processed by	Total landing records				
	airport by month.	Valid records				
		Number of records with missing parameters				
		Number of records with unreasonable parameters				
		Records with no associated runway				
		Go-around records				

Landing Database Raw Data Viewer

Landing Database Raw Data Viewer

Landing Database Raw Data Viewer (2)

Landing Events Database Date Range Query in Raw Data Viewer

 Allow queries by date ranges in the RawData viewer

II VirginiaTech

 Facilitates the runway auditing process investigations Date range control for landing operations queries

🖳 Landing Events Database - [ATL Raw Data]																
																1
- ATL	Runway	- Exit	+ Aircraft	+ Arrival	 Valid Flights 		1/1	/2015			to 1	1/ 1/2	017		Query	Export
···· Aircraft Mix		1012			-	_			_		_			_	-	-
Runway Occupand							1 C -		Janu	Jary 20	015		×			
- Speed							C.u.e	Man	т		ть	E.C.	C-+			
Nose Gear Down L							Sun	won	Tue	wea	Inu	-n	JBC			
- Deceleration							- x -	2	2	_		2	3			
Baw Data							4	2	0		8	9	10			
Statistics								12	13	14	15	10	17			
							18	19	20	21	22	23	24			
							25	26	27	28	29	30	31			
⊞ BOS							1	2	3	4	5	6	1			
								L	T	oday:	1/26/2	2021				
⊕ CLE							_							·		
庄 CLT																
DCA																
. DFW																

VirginiaTech Invent the Future
Three Definitions of Runway Occupancy Time

CDF of ROT for BOS - 04R

Distribution of Runway Occupancy Times PDF of ROT for DEN - 16R

Air Transportation Systems Laboratory

WirginiaTech Invent the Future Ground Speed Distribution Over Runway Threshold

CDF of Speed for BOS - 04R - A320

VirginiaTech

Runway Occupancy Time Tables

Aircraft Velocity Profiles : Airbus A319 at DCA Runway 19

ORD Airport Runway 9L (Two Usable Exits)

ORD Airport Runway 27L (Five Usable Exits)

Runway Exit Design Tool

Updated Runway Exit Design Tool (REDIM 3 Model)

The Runway Exit Design Tool can be downloaded at:

https://atsl.cee.vt.edu/products/runway-exitdesign-interactive-model--redim-.html

Download REDIM 3

- REDIM 3.0.9 Windows Installer
- User Group
- User Manual
- FAQs
- Change Log

Download Landing Events Database

- Landing Events Database 1.2.4 Windows Installer
- User Manual

Download REDIM 2

REDIM 2.1

Detailed Documentation for REDIM 3

- Aircraft Database
- Runway Clusters
- Exit Clusters (Plots)
- Distributions:
 - Threshold Crossing Speeds: Aircraft AAC
 - Nose Gear Down Distances: Aircraft AAC
 - Nominal Decelerations: Aircraft AAC
 - Point Of Curvature (PC) Speeds: Aircraft AAC

General Information About the Model

- Model has three analysis modules:
 - a) Evaluation of an existing runway
 - b) Improvements to an existing runway
 - c) Design optimal locations for a new runway

Model uses Monte Carlo Simulation to predict aircraft landing roll performance

- Stand-alone Windows
 application
- Requires ~1.8 Gb of hard disk space
- New runway clustering
- Improvements to landing roll profile calculations

WirginiaTech Invent the Future Runway Exit Design Model (a Computer Tool)

Runway Exit Design Tool Outputs

Analysis	Purpose	Outputs Produced			
Aircraft Mix	Provides an overview of aircraft fleet mix	Percent of aircraft types simulated in the analysis			
Runway Occupancy	Provides three values of runway occupancy	1.Average ROT (in seconds) by runway exit and aircraft (table format)			
Time	time measured at two locations:	2.Average ROT (in seconds) by runway exit and aircraft (graphical			
	1.Fuselage out	format)			
	2.At hold bar	3. Weighted average ROT for the complete aircraft mix using the runway			
		4. Standard deviation of ROT for the complete fleet mix			
		5. Individual landing roll times for every aircraft simulated by the model (~50,000 landings per aircraft)			
Runway Exit Utilization	Provides information about aircraft assigned to	1. Percent of individual aircraft assigned to each runway exit			
	each exit	2. Individual ROT by aircraft and runway exit			
Aircraft Landing Performance	Provides individual landing event information (REDIM uses a Monte Carlo Simulation	1. Landing roll distributions (CDF and PDF) by runway condition (wet or dry) in table format			
	Process)	2. Landing roll distributions (CDF and PDF) by runway condition (wet or dry) in graphical form			
		3. Landing roll distances and times by aircraft and runway pavement condition (wet or dry)			
		a) Air distance and air time (time to nose gear touchdown)			
		b) Nominal braking distance and time			
		c) Extra roll distance and time			
		d) Turnoff distance and time			

Differences with Previous Runway Exit Model

UirginiaTech

Item	Older Model (REDIM 2.1)	New Model (REDIM 3)
Wind information	Single wind speed and direction	Landing observations are effected by local wind conditions
	Airports have complex wind patterns	Landing events database has wind speed and direction for each landing
		REDIM 3 designs for average wind conditions included in the landing speed distributions collected at 37 ASDE-X airports
Runway gradient	Ten values of local gradients along the runway	Runways designed for commercial operations have limited gradients by
	Model will calculate the average gradient and apply a very small correction factor	1.5%)
		The correction factor for such runways is very small
		We plan to investigate this issue in the future
Pavement conditions	50/50 wet dry default condition	10/90 default condition in new model
	Wet pavement conditions reduce nominal deceleration	Rainfall data collected at selected airports provided the basis for the new default
		Wet pavement conditions reduce nominal deceleration
Safety factor	Turnoff safety factor (user defined)	The new model is based on extensive runway and runway exit data
		Observed runway exit speeds in the new model make the use of a safety factor in the turning maneuver unnecessary
Aircraft fleet	5 aircraft modeled directly (Douglas DC9-30,	298 aircraft modeled
	McDonnell Douglas MD-80, Boeing 727-200, Boeing 737-300 and Boeing 757-200)	Aircraft performance adjusted for airport elevation and temperature
	70+ aircraft modeled indirectly based on landing distance parameters adjusted for airport elevation	Landing roll distributions use Kernel Density Functions (KDE) for individual aircraft (functions of runway length and runway exit types)
	Aircraft performance adjusted for airport elevation and temperature	Model defaults to Aircraft Approach Group (AAC) category if a Kernel distribution does not exists for the aircraft in question
	Model assumed all landing roll distributions to be normally distributed truncated to 2.5 sigma	

WirginiaTech

REDIM 3 Aircraft Database

- The model contains data for 298 aircraft
 - 134 turbofan aircraft
 - 105 piston aircraft
 - 59 turboprop aircraft

New aircraft identified in Phase 2 dataset (see next page)

🖳 REDIM - FAA AC Runs - [Aircra	aft Database]								19	51-	
🖳 File 🛛 Aircraft Database	Window Help										
 Design a New Runway Improve an Existing Runway Valuate an Existing Runway 	Ai	ircraf	ft Design Group	(ADG): I -						AD	G I Aircraft
			Aircraft ID	Aircraft Name	Engine Type	Aircraft Design Group	Aircraft Approach Category	Nose Gearto Main Gear(m)	Nose Gear to Tail (m)	Wing Tip Radius (m)	Full Length (m)
AAC C Runs AAC D Runs 9000ft		Þ	AA1	Grumman American AA1	Piston	1	A	1.48	5.14	3.78	5.87
			AA5	Grumman American AA5	Piston	1	A	1.66	5.65	4.92	6.71
⊡ Individual_Acft_Runs			AC11	Rockwell Commander 112	Piston	l l	A	2.15	6.65	5	7.63
			AC50	Aero Commander 500	Piston	I	A	4.27	10.95	7.49	11.2
			AC90	Turbo Commander 690	Turboprop	1	В	5.1	12.89	7.16	13.5
			AEST	Piper Aerostar	Piston	1	В	3.43	8.91	5.2	10.6
			B36T	Beechcraft Bonanza 36	Piston	I	A	3.19	6.99	5.89	8.5
			BE10	Beechcraft B100 King Air	Turboprop	I	В	4.43	11.67	7.02	12.2
			BE23	Beechcraft 23 Musketeer	Piston		A	1.89	7.12	5.02	8.2
			BE24	Beechcraft 24 Sierra	Piston	1	A	1.96	6.85	5.04	7.9
			BE33	Beechcraft F33 Bonanza	Piston	I	A	2.24	7.19	5.17	7.7
			BE35	Beechcraft V35 Bonanza	Piston	I	A	2.2	7.87	5.76	8.6
			BE36	Beechcraft 36 Bonanza	Piston	1	A	2.47	7.63	5.18	8.1
			BE40	Beechcraft 400 Hawker	Jet	1	В	5.88	13.39	6.86	14.8
			BE50	Beechcraft 50 Twin Bonanza	Piston	I	A	1.14	8.18	7.1	9.6
			BE55	Beechcraft 55 Baron	Piston	I	В	2.2	7.87	5.76	8.6

Expanding REDIM 3 Aircraft Database

 New airport data (2017-2020) at 43 ASSC airports has operational data on new aircraft

Aircraft Class	Types				
AACA	Piper Cherokee Arrow				
AAC B	Pilatus PC-24 Cirrus Vision SF50 Piper Seneca PA34 Lockheed C-130 Hercules	Cessna Citation Longitude Cessna Citation Bravo Cessna Citation M2 Dassault Falcon 8X Bombardier Global Express 7500			
AAC C	Airbus A319 neo Airbus A320 neo Airbus A321 neo Boeing 737-7 Max Embraer 195	Embraer 175-E2 Embraer 190-E2 Embraer 195-E2 Gulfstream G500 Gulfstream G600			
AAC D	Boeing 737-8 Max Boeing 737-9 Max Boeing 777-8 Boeing 777-9 Boeing 787-10	Airbus A330-800 Airbus A330-900 Airbus A350-1000			
VirginiaTech

REDIM 3 Menu Structure

UirginiaTech

Sample Screens of Runway Exit Design Tool

Air Transportation Systems Laboratory

Invent the Future

VirginiaTech

Interface and Panels in the Runway Exit Design Model

Air Transportation Systems Laboratory

VirginiaTech Invent the Future

Navigation/Project Panel Hierarchy

VirginiaTech

Runway Exit Model Landing Roll Profile Phases Modeled

Runway Clusters in REDIM 3

	Runway L	ength (ft)	Number Of Runways
Cluster #	Min	Мах	
14	2555	2890	4
19	3796	4385	10
5	4588	4894	8
11	4989	5515	16
17	5709	6019	6
10	6486	6570	6
7	6806	7236	26
16	7479	7607	12
1	7657	7849	10
9	7946	8197	18
3	8375	8710	30
13	8907	9032	28
8	9190	9503	22
20	9691	10038	20
6	10277	10768	Runway clusters
18	10950	11145	influence the
15	11377	11553	
4	11863	12293	landing roll behavic
2	12962	13436	10
12	16020	16020	2
Total			292

UirginiaTech

Model Uses Individual Aircraft Data

Aircraft nominal deceleration distributions are different for every runway cluster (i.e., runway length) Runway Cluster Affects Landing Roll Profile Mean Deceleration Rates for Narrow Body Aircraft

WirginiaTech

Invent the Future

Runway Cluster Effect on Nose Gear Touchdown Locations (Narrow Body Aircraft)

WirginiaTech

Invent the Future

Runway Exit Clusters and Geometry

- Three parameters define the **runway exit cluster**:
 - Radius

WirginiaTech

Invent the Future

- Path length to hold bar
- Exit angle

Each runway exit cluster has a distinct aircraft speed behavior

VirginiaTech

Runway Exit Clusters in REDIM 3

	Angle (d	eg)	Radius	s (ft)	Path Length	n (ft)	Number Of Exits	Type of Runway
Cluster #	Min	Max	Min	Max	Min	Max		Exit
7	50	76	150	590	426	696	55	Intermediate angle, midsize path length
4	25	53	150	600	494	708	59	Acute angle, modest radius, midsize path length
16	30	70	400	900	966	1158	58	Intermediate angle, long path length
17	21	61	300	900	715	956	28	Acute angle, midsize radius, long path length
5	23	53	500	1000	1130	1546	13	Acute angle, midsize radius, long path length
13	28	65	675	1400	584	872	66	Acute angle, long radius, midsize path length
12	30	52	1200	1503	761	1108	37	Acute angle, midsize radius, long path length
2	30	57	1800	1800	677	1043	96	Acute angle, long radius, midsize path length
6	20	30	1400	1800	1233	1684	63	Acute angle, long radius, long path length
18	20	35	1800	1800	1047	1224	95	Acute angle, long radius, long path
		Moo runv	del uses way exit	20 runw characte	ay exit clueristics	usters	to diffe	rentiate

Air Transportation Systems Laboratory

WirginiaTech

Effect of Runway Exit Cluster on Exit Speed

	Angle (de	eg)	Radius (ft)	Path L	ength (ft)	Number Of Exits	Type of Runway
Cluster #	Min	Мах	Min	Max	Min	Max		Exit
2	30	57	1800	1800	677	1043	96	Acute angle, long radius, midsize path length
6	20	30	1400	1800	1233	1684	63	Acute angle, long radius, long path length

Air Transportation Systems Laboratory

WirginiaTech

tables

REDIM 3 Output (Tabular Form)

prove an Existing Runway Choose Aircraft: A320												
aluate an Existing Runway												
Create New Folder												
· AAC A Runs · AAC C Runs		Landing	Wet		Fvit	Air Distance	Braking	Extra Roll	Turnol	f Di	Total	
AAC D Runs 9000ft		Number	Conditions			(ft)	(ft)	(ft)	(ft)		(ft)	
AAC_B_Runs	•	1			A	2.447	2.154	1.452	25	3	6.311	
Individual_Acft_Runs		2		-	E-22	2.001	1,963	737	25	9	4.961	
Runway13_evaluation		3			F-22	2 000	1.825	877	25	7	4 958	
Runway19_DCA		4			A	2 426	2 596	1.031	26)	6.313	
Start Evaluation		5		-	A	1.846	2 234	1 973	25	2	6 311	
Delete Case Folder		6			Laet	2 504	3 216	1 130	25	2	7 108	
⊡ · Runway19		7		-	Δ	2,364	2.097	1,130	25	a	6 312	
Runway Settings		0			Δ	1 999	2,007	1,000	25	2	6 212	
Runway Exit Locations		0		<u></u>	F 22	1,333	2,341	572	23	2	0,312	
Runway Occupancy Tim		5			E-22	2,024	1,000	3/2	20		4,300	
- I ables		10			F_L	2,049	1,600	/10	20		4,6/8	
Plots		11		-	A	2,191	2,153	1,709	25	3	6,311	
Kunway Exit Aircraft Ass		12		-	A	2,159	2,010	1,884	25		6,312	
Landing Components Die		13		-	A	2,247	1,894	1,912	25)	6,312	
- Landing Distances and		14		_	E-22	2,054	1,920	/2/	26)	4,961	
Plate		15	Yes		A	2,232	1,986	1,835	25	9	6,316	
Edit Duraway		16	1	-	A	2,141	2,195	1,717	26)	6,313	
Delete Rupway		17			F_L	1,700	1,763	956	25	3	4,677	
Delete Hurway		18			Evoluate and	Evicting Pupusy I and	na Speeds & Decelor	ations for A220 (Pup	waw10) Table			
		19				A 220	ng speeds & Decelera	T		7		
		20			noose Aircratt	A320		ances Times Spe	eds & Deceleration	5		
								Land	ing Speeds	5 Deceler	ations for A	320
	anc	lina avi	ante							(Runway19)		
W	ith	a wet r	unway		Landin Numbe	ng Wet er Conditions	Exit	Threshold Crossing Speed	Touchdown Speed (knots)	Nominal Speed (knots)	Speed at PC (knots)	Nominal Deceleration (m/s^2)
					F 1		A	132	125	70	16	-2.17
					2		E-22	132	125	70	22	-2.37
					3		E-22	129	122	70	23	-2.39
					4		A	129	122	70	23	-1.69
					5		A	138	131	70	23	-2.40
	_				6		Last	141	134	70	21	-1.77
			anding				A	130	128	70	20	-2.41
		zvery ia	anding		9		E-22	127	123	70	24	-2.80
		in ulat			10)	F_L	131	124	70	22	-2.77
		simul <u>at</u>	ea in		11		A	134	127	70	18	-2.29
			0 :0		12	2	A	128	122	70	17	-2.14
		REDIM	3 IS		13		A	126	119	70	20	-2.15
					14	Yee	E-22	140	133	70	24	-2.91
		enone			1.	103		131	144	/0	20	-2.23

•

Average

All output tables can be exported as **Comma Separated** Format files

Deceleration

after PC

(m/s^2)

-0.34

-0.34

-0.34

-0.34

-0.34

-0.34

-0.34

-0.34

-0.34

-0.34

-0.34

-0.34

-0.34

-0.34

-0.34

-0.3 Save Table

Deceleration to

PC (m/s^2)

-1.38

-2.61

-2.16

-1.84

-0.96

-1.71

-1.17

-1.09

-3.13

-2.68

-1.16

-1.06

-1.02

-2.58

-0.97

-1.62

Touchdown

Speed Coefficient

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.95 >

0.95

Close

Air Transportation Systems Laboratory

133

70

126

24

-2.21

Application of Runway Exit Design Tool to Selected US Airports

VirginiaTech Invent the Future Application of the Runway Exit Design Tool to Four Airports

Air Transportation Systems Laboratory

Application of the Runway Exit Design Tool to PHL

Runway Exit Study High-Speed Runway Exits at PHL Runway 27L	Scenario	Location of New Optimal High- Speed Exit (ft)	Wet/Dry Mix (%/%)	Remarks
	Baseline	Not applicable	10/90	Open exits: U, S7, Y, S9, S11, S12 and S13
H	One High-Speed Runway Exit, 10/90	5,190	10/90	Open exits: U, S7, Y, NewHS1, S11, S12 and S13
N. Mirmohammadsadeghi, N. Hinze and A. Trani November 7, 2019	One High-Speed Runway Exit, 20/80	5,280	20/80	Open exits: U, S7, Y, NewHS1, S11, S12 and S13
Air Transportation Systems Laboratory				

 Optimal location of a new High-Speed Runway exit designed for 20/80% wet/dry pavement conditions is <u>5,280</u> <u>feet</u> (point of curvature)

- Runway exit Sierra-9 is eliminated
- **793 feet** distance between new exit high-speed exit HS2 and Sierra-11
 Optimally located runway exit in yellow

An Optimally Located High-Speed Runway Exit at PHL Runway 27L Could Reduce the Weighted Average Runway Occupancy Time by 4.4 to 4.2 Seconds

Airport Fleet Mix Used in the Analysis of Runway 27L

WirginiaTech

Invent the Future

UirginiaTech

PHL Runway 27L

- S7 located at 3,350 feet from threshold
- S11 located at 6,073 feet from threshold
- Earliest PC of new high-speed runway exit ~ 4150 feet
- Furthest PC of new high-speed runway exit ~ 5273 feet

If 800 feet is the minimum distance to locate two high-speed exits

Scenarios Studied with New PHL Fleet Mix

Scenario	Location of New Optimal High- Speed Exit (ft)	Wet/Dry Mix (%/%)	Remarks
Baseline	Not applicable	10/90	<i>Open exits: U, S7, Y, S9, S11, S12 and S13</i>
One High-Speed Runway Exit, 10/90	5,190	10/90	<i>Open exits: U, S7, Y, NewHS1, S11, S12 and S13</i>
One High-Speed Runway Exit, 20/80	5,280	20/80	<i>Open exits: U, S7, Y, NewHS1, S11, S12 and S13</i>

Optimal locations found using REDIM 3 dynamic programming algorithm The backup slides contain probabilities of precipitation at PHL

Case: One New High-Speed Runway Exit, 20/80 (wet/dry pavement design)

- Optimal location of a new High-Speed Runway exit designed for 20/80% wet/dry pavement conditions is <u>5,280</u> <u>feet</u> (point of curvature)
- Runway exit Sierra-9 is eliminated
- **793 feet** distance between new exit high-speed exit HS2 and Sierra-11 Optimally located runway exit in yellow

WirginiaTech Invent the Future An Optimally Located High-Speed Runway Exit at PHL Runway 27L Could Reduce the Weighted Average Runway Occupancy Time by 4.4 to 4.2 Seconds

PHL Fleet Mix (Jan/2018 to Aug/2019) provided by FAA

Aircraft Using the New High-Speed Exit at 5,280 feet could Save 3.5-4.7 seconds Compared to Using HS Exit Sierra-11 (6073 ft)

Air Transportation Systems Laboratory

UirginiaTech

Typical Use of the REDIM Model

UirginiaTech

Air Transportation Systems Laboratory

VirginiaTech Invent the Future Challenges Ahead with Reduced In-Trail Separations

• Runway occupancy times may take an important role in runway throughput

source of data: ASDE-X (37,383 Boeing 737-800 operations at 20 US airports)

Air Transportation Systems Laboratory

New Features of Runway Exit Model

Pilot motivational practice

Virginia'l'ech

- Expanded aircraft database (28-30 new aircraft)
- Improved algorithms to predict runway exit use for small, single-engine aircraft

Pilot Motivation Procedure

- User provides a qualitative motivational factor (i.e., low, medium, or high)
- Requires information on fleet and fraction of the fleet that has motivation
- Default is always the existing procedure (no additional input)

VirginiaTech

UirginiaTech

Air Transportation Systems Laboratory

 Goal is to improve the runway exit use prediction for small, single engine aircraft

WirginiaTech

 Current recommendation in using REDIM 3 to model small single engines piston powered aircraft to employ high performance aircraft in the database such as Piper PA-34 and Beechcraft Bonanza A36

Deceleration rates for Cessna 172 landing operations versus Pilot Operating Handbook data

New Features of the Landing Events Database

- 43 airports (versus 37 in version 1.2.4)
- Updated runway and exit clusters based on four years of additional data
- 28 new additional aircraft including new generation commercial aircraft (Airbus A320 neo class and Boeing 737-8 Max class)
- Others suggested by users

VirginiaTech

More than 3500 runway exits have been audited

UirginiaTech

Geometric design features identified and updated

Expanding REDIM 3 Aircraft Database

 New airport data (2017-2020) at 43 ASSC airports has operational data on new aircraft

Aircraft Class	Types						
AACA	Piper Cherokee Arrow						
AAC B	Pilatus PC-24 Cirrus Vision SF50 Piper Seneca PA34 Lockheed C-130 Hercules	Cessna Citation Longitude Cessna Citation Bravo Cessna Citation M2 Dassault Falcon 8X Bombardier Global Express 7500					
AAC C	Airbus A319 neo Airbus A320 neo Airbus A321 neo Boeing 737-7 Max Embraer 195	Embraer 175-E2 Embraer 190-E2 Embraer 195-E2 Gulfstream G500 Gulfstream G600					
AAC D	Boeing 737-8 Max Boeing 737-9 Max Boeing 777-8 Boeing 777-9 Boeing 787-10	Airbus A330-800 Airbus A330-900 Airbus A350-1000					

Runway Exit Design Guidance

VirginiaTech FAA AC 150/5300-13 Runway Location Guidance

Table 4-9. Exit taxiway cumulative utilization percentages

DICTANCE	WE	WET RUNWAYS DRY RUNWAYS										
THRESHOLD TO EXIT	RIG	RIGHT & ACUTE ANGLED EXITS				RIG GLED	HT EXITS		AN			
	s	Т	L	н	s	Т	L	н	S	Т	L	н
0 ft (0 m)	0	0	0	0	0	0	0	0	0	0	0	0
500 ft (152 m)	0	0	0	0	0	0	0	0	1	0	0	0
1000 ft (305 m)	4	0	0	0	6	0	0	0	13	0	0	0
1500 ft (457 m)	23	0	0	0	39	0	0	0	53	0	0	0
2000 ft (610 m)	60	0	0	0	84	1	0	0	90	1	0	0
2500 ft (762 m)	84	1	0	0	99	10	0	0	99	10	0	0
3000 ft (914 m)	96	10	0	0	100	39	0	0	100	40	0	0
3500 ft (1067 m)	99	41	0	0	100	81	2	0	100	82	9	0
4000 ft (1219 m)	100	80	1	0	100	98	8	0	100	98	26	1
4500 ft (1372 m)	100	97	4	0	100	100	24	2	100	100	51	19
5000 ft (1524 m)	100	100	12	0	100	100	49	9	100	100	76	55
5500 ft (1676 m)	100	100	27	0	100	100	75	24	100	100	92	81
6000 ft (1829 m)	100	100	48	10	100	100	92	71	100	100	98	9:
6500 ft (1981 m)	100	100	71	35	100	100	98	90	100	100	100	99
7000 ft (2134 m)	100	100	88	64	100	100	100	98	100	100	100	100
7500 ft (2286 m)	100	100	97	84	100	100	100	100	100	100	100	100
8000 ft (2438 m)	100	100	100	93	100	100	100	100	100	100	100	100
8500 ft (2591 m)	100	100	100	99	100	100	100	100	100	100	100	100
9000 ft (2743 m)	100	100	100	100	100	100	100	100	100	100	100	100

Notes:

L - Large

H - Heavy

S - Small, single engine T - Small, twin engine

12,500 lbs (5670 kg) or less 12,500 lbs (5670 kg) or less 12,500 lbs (5670 kg) to 300,000 lbs (136080 kg) 300,000 lbs

VirginiaTech

Runway Exit Location Guidance for FAA AC 150/5300-13b

For Typical Acute Angle Exit Locations, Increase Runway Exit Location by 150 feet for Every 1,000 ft Airfield Elevation Change ↔ Sea Level • 3,000 ft 6,000 ft 1.00 0.90 **Cumulative Density Function** 0.80 of Aircraft Able to Exit 0.70 0.60 0.50 0.40 0.30 Acute Angled Exits 0.20 90% Dry Pavement 10% Wet Pavement 0.10 9,000 foot Runway 0.00 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000

Location of Runway Exit (feet)

Air Transportation Systems Laboratory

Location of Runway Exit (feet)

Air Transportation Systems Laboratory

Contact Information and Web Site

 For more information or questions about the tools presented you can contact us:

VirginiaTech

- Toni Trani (<u>vuela@vt.edu</u>)
- Nick Hinze (<u>nhinze@vt.edu</u>)

https://atsl.cee.vt.edu/products/runway-exitdesign-interactive-model--redim-.html